乐闻世界logo
搜索文章和话题

How to implement error handling and retry mechanisms in MCP?

2月19日 21:34

Implementing error handling and retry mechanisms in MCP is crucial for ensuring system stability and reliability. Here are detailed implementation strategies:

Error Handling Strategies

1. Error Classification

  • Retryable Errors: Network timeouts, temporary service unavailability, rate limits, etc.
  • Non-retryable Errors: Parameter errors, insufficient permissions, resource not found, etc.
  • Business Errors: Business logic-related errors requiring special handling

2. Error Response Format

json
{ "jsonrpc": "2.0", "id": "req-123", "error": { "code": -32000, "message": "Server error", "data": { "retryable": true, "retryAfter": 5, "details": "Database connection timeout" } } }

3. Error Handling Implementation

python
from typing import Optional import asyncio class MCPErrorHandler: def __init__(self): self.retryable_codes = [ -32000, # Server error -32001, # Timeout -32002 # Rate limit ] def is_retryable(self, error: dict) -> bool: """Determine if error is retryable""" error_code = error.get("code") return error_code in self.retryable_codes def get_retry_delay(self, error: dict) -> int: """Get retry delay time""" error_data = error.get("data", {}) return error_data.get("retryAfter", 1)

Retry Mechanisms

4. Exponential Backoff Retry

python
import time import random async def exponential_backoff_retry( func, max_retries: int = 3, base_delay: float = 1.0, max_delay: float = 32.0 ): """Exponential backoff retry mechanism""" last_exception = None for attempt in range(max_retries): try: return await func() except Exception as e: last_exception = e if attempt == max_retries - 1: raise # Calculate delay (with random jitter) delay = min( base_delay * (2 ** attempt) + random.uniform(0, 1), max_delay ) await asyncio.sleep(delay) raise last_exception

5. Intelligent Retry Strategy

python
class RetryStrategy: def __init__( self, max_retries: int = 3, backoff_factor: float = 2.0, jitter: bool = True ): self.max_retries = max_retries self.backoff_factor = backoff_factor self.jitter = jitter async def execute_with_retry( self, func, is_retryable: Optional[callable] = None ): """Execute function with intelligent retry strategy""" for attempt in range(self.max_retries): try: return await func() except Exception as e: if attempt == self.max_retries - 1: raise if is_retryable and not is_retryable(e): raise delay = self._calculate_delay(attempt) await asyncio.sleep(delay) def _calculate_delay(self, attempt: int) -> float: """Calculate retry delay""" delay = self.backoff_factor ** attempt if self.jitter: delay += random.uniform(0, delay * 0.1) return delay

Circuit Breaker Pattern

6. Implementing Circuit Breaker

python
from enum import Enum import time class CircuitState(Enum): CLOSED = "closed" OPEN = "open" HALF_OPEN = "half_open" class CircuitBreaker: def __init__( self, failure_threshold: int = 5, recovery_timeout: float = 60.0 ): self.failure_threshold = failure_threshold self.recovery_timeout = recovery_timeout self.state = CircuitState.CLOSED self.failure_count = 0 self.last_failure_time = None async def call(self, func): """Call function through circuit breaker""" if self.state == CircuitState.OPEN: if self._should_attempt_reset(): self.state = CircuitState.HALF_OPEN else: raise Exception("Circuit breaker is OPEN") try: result = await func() self._on_success() return result except Exception as e: self._on_failure() raise def _should_attempt_reset(self) -> bool: """Determine if circuit breaker should attempt reset""" if self.last_failure_time is None: return False elapsed = time.time() - self.last_failure_time return elapsed >= self.recovery_timeout def _on_success(self): """Handle success""" self.failure_count = 0 if self.state == CircuitState.HALF_OPEN: self.state = CircuitState.CLOSED def _on_failure(self): """Handle failure""" self.failure_count += 1 self.last_failure_time = time.time() if self.failure_count >= self.failure_threshold: self.state = CircuitState.OPEN

Monitoring and Logging

7. Error Monitoring

python
class ErrorMonitor: def __init__(self): self.error_counts = {} self.error_rates = {} def record_error(self, error_type: str): """Record error""" self.error_counts[error_type] = \ self.error_counts.get(error_type, 0) + 1 def get_error_rate(self, error_type: str) -> float: """Get error rate""" total = sum(self.error_counts.values()) if total == 0: return 0.0 return self.error_counts.get(error_type, 0) / total

Best Practices

  1. Classify Error Types: Correctly identify retryable and non-retryable errors
  2. Set Reasonable Retry Parameters: Adjust retry count and delay based on business scenarios
  3. Implement Circuit Breaker: Prevent cascading failures
  4. Detailed Logging: Record all errors and retry information
  5. Monitoring and Alerting: Monitor error rates in real-time and set up alerts
  6. Graceful Degradation: Provide fallback solutions when services are unavailable

Through these strategies, you can build a robust MCP system that effectively handles various error scenarios.

标签:MCP