乐闻世界logo
搜索文章和话题

What are the performance optimization techniques for Deno?

2月19日 19:55

Performance optimization in Deno is crucial for building high-performance applications. Understanding Deno's performance characteristics and optimization techniques can help developers fully leverage its potential.

Performance Characteristics Overview

Deno is built on Rust and the V8 engine, providing a solid performance foundation. Through proper optimization strategies, application performance can be further enhanced.

Startup Performance Optimization

1. Reduce Dependency Loading

typescript
// Bad practice: Load all dependencies at the top level import { heavyModule1 } from "./heavy-module-1.ts"; import { heavyModule2 } from "./heavy-module-2.ts"; import { heavyModule3 } from "./heavy-module-3.ts"; // Good practice: Load on demand async function processWithHeavyModule1() { const { heavyModule1 } = await import("./heavy-module-1.ts"); return heavyModule1.process(); }

2. Use Caching

typescript
// Cache compilation results const cache = new Map<string, any>(); async function getCachedData(key: string, fetcher: () => Promise<any>) { if (cache.has(key)) { return cache.get(key); } const data = await fetcher(); cache.set(key, data); return data; }

3. Warm Up Cache

typescript
// Warm up cache on application startup async function warmupCache() { await Promise.all([ getCachedData("config", loadConfig), getCachedData("translations", loadTranslations), ]); } warmupCache().then(() => { console.log("Cache warmed up, ready to serve"); });

Runtime Performance Optimization

1. Use Efficient Data Structures

typescript
// Use Map instead of Object for frequent lookups const userMap = new Map<string, User>(); // Fast lookup function getUser(id: string): User | undefined { return userMap.get(id); } // Use Set for fast existence checks const activeUsers = new Set<string>(); function isActiveUser(id: string): boolean { return activeUsers.has(id); }

2. Avoid Unnecessary Computations

typescript
// Use memoization function memoize<T extends (...args: any[]) => any>(fn: T): T { const cache = new Map<string, ReturnType<T>>(); return ((...args: Parameters<T>) => { const key = JSON.stringify(args); if (cache.has(key)) { return cache.get(key); } const result = fn(...args); cache.set(key, result); return result; }) as T; } // Use memoized function const expensiveCalculation = memoize((n: number): number => { console.log(`Calculating for ${n}`); let result = 0; for (let i = 0; i < n * 1000000; i++) { result += i; } return result; }); // First call calculates console.log(expensiveCalculation(100)); // Second call uses cache console.log(expensiveCalculation(100));

3. Batch Processing

typescript
// Batch database operations async function batchInsert(items: Item[]): Promise<void> { const batchSize = 100; for (let i = 0; i < items.length; i += batchSize) { const batch = items.slice(i, i + batchSize); await insertBatch(batch); } } // Batch API requests async function batchFetch(urls: string[]): Promise<Response[]> { const batchSize = 10; const results: Response[] = []; for (let i = 0; i < urls.length; i += batchSize) { const batch = urls.slice(i, i + batchSize); const batchResults = await Promise.all( batch.map(url => fetch(url)) ); results.push(...batchResults); } return results; }

Memory Optimization

1. Avoid Memory Leaks

typescript
// Clean up resources promptly class ResourceManager { private resources: Set<Disposable> = new Set(); register(resource: Disposable) { this.resources.add(resource); } cleanup() { for (const resource of this.resources) { resource.dispose(); } this.resources.clear(); } } // Use WeakMap to avoid strong references const weakCache = new WeakMap<object, any>(); function cacheData(obj: object, data: any) { weakCache.set(obj, data); }

2. Stream Large Files

typescript
// Use streaming to process large files, avoid loading all into memory import { readableStreamFromIterable } from "https://deno.land/std@0.208.0/streams/mod.ts"; async function processLargeFile(filePath: string) { const file = await Deno.open(filePath); const reader = file.readable.getReader(); const buffer = new Uint8Array(1024 * 1024); // 1MB buffer while (true) { const { done, value } = await reader.read(buffer); if (done) break; // Process data chunk processDataChunk(value); } file.close(); }

3. Object Pool Pattern

typescript
// Object pool to reuse objects, reduce GC pressure class ObjectPool<T> { private pool: T[] = []; private factory: () => T; private reset: (obj: T) => void; constructor( factory: () => T, reset: (obj: T) => void, initialSize: number = 10 ) { this.factory = factory; this.reset = reset; for (let i = 0; i < initialSize; i++) { this.pool.push(factory()); } } acquire(): T { return this.pool.pop() || this.factory(); } release(obj: T) { this.reset(obj); this.pool.push(obj); } } // Use object pool const bufferPool = new ObjectPool( () => new Uint8Array(1024 * 1024), (buffer) => buffer.fill(0), 5 ); async function processData() { const buffer = bufferPool.acquire(); try { // Use buffer to process data await processWithBuffer(buffer); } finally { bufferPool.release(buffer); } }

Concurrency Performance Optimization

1. Use Workers for Parallel Processing

typescript
// Use Workers for CPU-intensive tasks import { WorkerPool } from "./worker-pool.ts"; const pool = new WorkerPool("./data-processor.ts", 4); async function parallelProcess(data: any[]) { const promises = data.map(item => pool.execute(item)); return Promise.all(promises); }

2. Control Concurrency

typescript
// Control concurrent requests class ConcurrencyController { private running: Set<Promise<any>> = new Set(); private maxConcurrent: number; constructor(maxConcurrent: number) { this.maxConcurrent = maxConcurrent; } async execute<T>(task: () => Promise<T>): Promise<T> { while (this.running.size >= this.maxConcurrent) { await Promise.race(this.running); } const promise = task().finally(() => { this.running.delete(promise); }); this.running.add(promise); return promise; } } const controller = new ConcurrencyController(10); async function fetchWithConcurrency(urls: string[]) { return Promise.all( urls.map(url => controller.execute(() => fetch(url))) ); }

3. Use Async Iterators

typescript
// Use async iterators for streaming data async function* processStream(stream: ReadableStream<Uint8Array>) { const reader = stream.getReader(); while (true) { const { done, value } = await reader.read(); if (done) break; yield processChunk(value); } } // Use async iterator for await (const result of processStream(dataStream)) { console.log(result); }

I/O Performance Optimization

1. Use Async I/O

typescript
// Always use async I/O operations async function readConfig(): Promise<Config> { const content = await Deno.readTextFile("config.json"); return JSON.parse(content); } // Batch file operations async function batchReadFiles(filePaths: string[]): Promise<Map<string, string>> { const results = new Map<string, string>(); await Promise.all( filePaths.map(async (path) => { const content = await Deno.readTextFile(path); results.set(path, content); }) ); return results; }

2. Use Caching Strategies

typescript
// LRU cache implementation class LRUCache<K, V> { private cache: Map<K, V>; private maxSize: number; constructor(maxSize: number) { this.cache = new Map(); this.maxSize = maxSize; } get(key: K): V | undefined { const value = this.cache.get(key); if (value !== undefined) { // Re-insert to update access order this.cache.delete(key); this.cache.set(key, value); } return value; } set(key: K, value: V): void { if (this.cache.has(key)) { this.cache.delete(key); } else if (this.cache.size >= this.maxSize) { // Delete oldest item const firstKey = this.cache.keys().next().value; this.cache.delete(firstKey); } this.cache.set(key, value); } } // Use LRU cache const configCache = new LRUCache<string, Config>(100); async function getConfigWithCache(key: string): Promise<Config> { const cached = configCache.get(key); if (cached) { return cached; } const config = await loadConfig(key); configCache.set(key, config); return config; }

3. HTTP Performance Optimization

typescript
// Use connection pooling import { serve } from "https://deno.land/std@0.208.0/http/server.ts"; const handler = async (req: Request): Promise<Response> => { // Enable compression const acceptEncoding = req.headers.get("accept-encoding"); let body = await getResponseBody(); if (acceptEncoding?.includes("gzip")) { body = await compressGzip(body); return new Response(body, { headers: { "Content-Encoding": "gzip", "Content-Type": "application/json", }, }); } return new Response(body, { headers: { "Content-Type": "application/json" }, }); }; // Use HTTP/2 await serve(handler, { port: 8000, alpnProtocols: ["h2"], });

Monitoring and Debugging

1. Performance Monitoring

typescript
// Performance monitoring tool class PerformanceMonitor { private metrics: Map<string, number[]> = new Map(); record(operation: string, duration: number) { if (!this.metrics.has(operation)) { this.metrics.set(operation, []); } this.metrics.get(operation)!.push(duration); } getStats(operation: string) { const durations = this.metrics.get(operation); if (!durations || durations.length === 0) { return null; } const sorted = [...durations].sort((a, b) => a - b); return { count: durations.length, min: sorted[0], max: sorted[sorted.length - 1], avg: durations.reduce((a, b) => a + b, 0) / durations.length, p50: sorted[Math.floor(sorted.length * 0.5)], p95: sorted[Math.floor(sorted.length * 0.95)], p99: sorted[Math.floor(sorted.length * 0.99)], }; } } // Use performance monitoring const monitor = new PerformanceMonitor(); async function measurePerformance<T>( operation: string, fn: () => Promise<T> ): Promise<T> { const start = performance.now(); try { return await fn(); } finally { const duration = performance.now() - start; monitor.record(operation, duration); } } // Usage example await measurePerformance("database-query", async () => { return await db.query("SELECT * FROM users"); });

2. Memory Profiling

typescript
// Memory usage monitoring function getMemoryUsage() { return { rss: Deno.memoryUsage().rss / 1024 / 1024, // MB heapTotal: Deno.memoryUsage().heapTotal / 1024 / 1024, heapUsed: Deno.memoryUsage().heapUsed / 1024 / 1024, external: Deno.memoryUsage().external / 1024 / 1024, }; } // Periodically report memory usage setInterval(() => { const usage = getMemoryUsage(); console.log("Memory usage:", usage); }, 60000); // Every minute

Best Practices

  1. Measure first: Measure performance bottlenecks before optimizing
  2. Progressive optimization: Optimize one aspect at a time, avoid over-optimization
  3. Use caching: Reasonably use caching to reduce redundant calculations
  4. Async first: Always use async I/O operations
  5. Batch processing: Batch operations to reduce overhead
  6. Resource management: Release unused resources promptly
  7. Continuous monitoring: Continuously monitor performance metrics

Deno provides a solid performance foundation, and through proper optimization strategies, high-performance applications can be built. Remember, premature optimization is the root of all evil, always optimize based on actual measurements.

标签:Deno