乐闻世界logo
搜索文章和话题

How to optimize Ollama performance and configure parameters?

2月19日 19:48

Optimizing Ollama performance can be approached from multiple aspects:

1. Model Quantization Selection: Ollama supports models with different quantization levels, balancing precision and performance:

  • q4_0 / q4_k_m - 4-bit quantization, fast speed, slightly lower precision
  • q5_0 / q5_k_m - 5-bit quantization, balanced speed and precision
  • q8_0 - 8-bit quantization, high precision, slower speed
  • f16 - 16-bit floating point, highest precision, slowest
bash
# Download different quantization versions ollama pull llama3.1:8b-q4_k_m ollama pull llama3.1:8b-q8_0

2. Parameter Tuning:

dockerfile
# Set in Modelfile PARAMETER temperature 0.7 # Control randomness, 0-1 PARAMETER top_p 0.9 # Nucleus sampling, 0-1 PARAMETER top_k 40 # Number of sampling candidates PARAMETER num_ctx 4096 # Context window size PARAMETER repeat_penalty 1.1 # Repetition penalty PARAMETER num_gpu 1 # Number of GPU layers

3. GPU Acceleration: Ensure GPU is properly configured:

bash
# Linux/macOS export CUDA_VISIBLE_DEVICES=0 # Check GPU usage nvidia-smi

4. Batch Processing Optimization:

bash
# Set batch size during API calls curl http://localhost:11434/api/generate -d '{ "model": "llama3.1", "prompt": "Hello", "options": { "num_batch": 512, "num_gpu": 99 } }'

5. Memory Management:

dockerfile
# Limit context length to reduce memory usage PARAMETER num_ctx 2048 # Use smaller models FROM llama3.1:8b # instead of 70b

6. Concurrent Requests: Ollama supports processing multiple requests concurrently, but is limited by hardware resources. Can optimize by increasing the num_parallel parameter:

dockerfile
PARAMETER num_parallel 2

7. Caching Strategy: Ollama caches models and responses, first load is slower, subsequent requests will be faster.

Performance Monitoring:

bash
# View resource usage ollama ps # View logs ollama logs
标签:Ollama